文本嵌入模型 text-embedding-model#
本文档介绍了如何在LangChain中使用Embedding类。
Embedding类是一个用于与嵌入进行交互的类。有许多嵌入提供商(OpenAI、Cohere、Hugging Face等)- 这个类旨在为所有这些提供商提供一个标准接口。
嵌入会创建文本的向量表示。这很有用,因为这意味着我们可以在向量空间中考虑文本,并执行诸如语义搜索之类的操作,其中我们在向量空间中寻找最相似的文本片段。
LangChain中的基本Embedding类公开了两种方法:embed_documents和embed_query。最大的区别在于这两种方法具有不同的接口:一个适用于多个文档,而另一个适用于单个文档。除此之外,将这两个方法作为两个单独的方法的另一个原因是,某些嵌入提供商针对要搜索的文档与查询本身具有不同的嵌入方法。
以下是文本嵌入的集成。