6大核心模块(Modules)
示例
Chroma Self Query Retriever

LangChain

使用Chroma进行自查询检索器#

在教程中,我们将演示围绕Chroma向量存储器包装的SelfQueryRetriever

创建Chroma向量存储器#

首先,我们需要创建一个Chroma VectorStore并用一些数据进行填充。我们创建了一个包含电影摘要的小型演示文档集。

注意:自查询检索器要求您安装larkpip install lark

# !pip install lark
 
from langchain.schema import Document
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Chroma
 
embeddings = OpenAIEmbeddings()
 
docs = [
    Document(page_content="A bunch of scientists bring back dinosaurs and mayhem breaks loose", metadata={"year": 1993, "rating": 7.7, "genre": "science fiction"}),
    Document(page_content="Leo DiCaprio gets lost in a dream within a dream within a dream within a ...", metadata={"year": 2010, "director": "Christopher Nolan", "rating": 8.2}),
    Document(page_content="A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea", metadata={"year": 2006, "director": "Satoshi Kon", "rating": 8.6}),
    Document(page_content="A bunch of normal-sized women are supremely wholesome and some men pine after them", metadata={"year": 2019, "director": "Greta Gerwig", "rating": 8.3}),
    Document(page_content="Toys come alive and have a blast doing so", metadata={"year": 1995, "genre": "animated"}),
    Document(page_content="Three men walk into the Zone, three men walk out of the Zone", metadata={"year": 1979, "rating": 9.9, "director": "Andrei Tarkovsky", "genre": "science fiction", "rating": 9.9})
]
vectorstore = Chroma.from_documents(
    docs, embeddings
)
 
Using embedded DuckDB without persistence: data will be transient
 

创建我们的自查询检索器#

现在我们可以实例化我们的检索器。为此,我们需要提供一些关于元数据字段和文档内容简短描述的信息。

from langchain.llms import OpenAI
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain.chains.query_constructor.base import AttributeInfo
 
metadata_field_info=[
    AttributeInfo(
        name="genre",
        description="The genre of the movie", 
        type="string or list[string]", 
    ),
    AttributeInfo(
        name="year",
        description="The year the movie was released", 
        type="integer", 
    ),
    AttributeInfo(
        name="director",
        description="The name of the movie director", 
        type="string", 
    ),
    AttributeInfo(
        name="rating",
        description="A 1-10 rating for the movie",
        type="float"
    ),
]
document_content_description = "Brief summary of a movie"
llm = OpenAI(temperature=0)
retriever = SelfQueryRetriever.from_llm(llm, vectorstore, document_content_description, metadata_field_info, verbose=True)
 

测试一下#

现在我们可以尝试使用我们的检索器了!

# This example only specifies a relevant query
retriever.get_relevant_documents("What are some movies about dinosaurs")
 
query='dinosaur' filter=None
 
[Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'year': 1993, 'rating': 7.7, 'genre': 'science fiction'}),
 Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'genre': 'animated'}),
 Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'year': 2006, 'director': 'Satoshi Kon', 'rating': 8.6}),
 Document(page_content='Leo DiCaprio gets lost in a dream within a dream within a dream within a ...', metadata={'year': 2010, 'director': 'Christopher Nolan', 'rating': 8.2})]
 
# This example only specifies a filter
retriever.get_relevant_documents("I want to watch a movie rated higher than 8.5")
 
query=' ' filter=Comparison(comparator=<Comparator.GT: 'gt'>, attribute='rating', value=8.5)
 
[Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'year': 2006, 'director': 'Satoshi Kon', 'rating': 8.6}),
 Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'year': 1979, 'rating': 9.9, 'director': 'Andrei Tarkovsky', 'genre': 'science fiction'})]
 
# This example specifies a query and a filter
retriever.get_relevant_documents("Has Greta Gerwig directed any movies about women")
 
query='women' filter=Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='director', value='Greta Gerwig')
 
[Document(page_content='A bunch of normal-sized women are supremely wholesome and some men pine after them', metadata={'year': 2019, 'director': 'Greta Gerwig', 'rating': 8.3})]
 
# This example specifies a composite filter
retriever.get_relevant_documents("What's a highly rated (above 8.5) science fiction film?")
 
query=' ' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='genre', value='science fiction'), Comparison(comparator=<Comparator.GT: 'gt'>, attribute='rating', value=8.5)])
 
[Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'year': 1979, 'rating': 9.9, 'director': 'Andrei Tarkovsky', 'genre': 'science fiction'})]
 
# This example specifies a query and composite filter
retriever.get_relevant_documents("What's a movie after 1990 but before 2005 that's all about toys, and preferably is animated")
 
query='toys' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.GT: 'gt'>, attribute='year', value=1990), Comparison(comparator=<Comparator.LT: 'lt'>, attribute='year', value=2005), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='genre', value='animated')])
 
[Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'genre': 'animated'})]