CSV代理#
本教程展示了如何使用代理与CSV交互,主要针对问题回答进行了优化。
注意:此代理在幕后调用Pandas DataFrame代理,后者调用Python代理,执行LLM生成的Python代码 - 如果LLM生成的Python代码有害,则可能会存在风险,请谨慎使用。
from langchain.agents import create_csv_agent
from langchain.llms import OpenAI
agent = create_csv_agent(OpenAI(temperature=0), 'titanic.csv', verbose=True)
agent.run("how many rows are there?")
> Entering new AgentExecutor chain...
Thought: I need to count the number of rows
Action: python_repl_ast
Action Input: len(df)
Observation: 891
Thought: I now know the final answer
Final Answer: There are 891 rows in the dataframe.
> Finished chain.
'There are 891 rows in the dataframe.'
agent.run("how many people have more than 3 sibligngs")
> Entering new AgentExecutor chain...
Thought: I need to count the number of people with more than 3 siblings
Action: python_repl_ast
Action Input: df[df['SibSp'] > 3].shape[0]
Observation: 30
Thought: I now know the final answer
Final Answer: 30 people have more than 3 siblings.
> Finished chain.
'30 people have more than 3 siblings.'
agent.run("whats the square root of the average age?")
> Entering new AgentExecutor chain...
Thought: I need to calculate the average age first
Action: python_repl_ast
Action Input: df['Age'].mean()
Observation: 29.69911764705882
Thought: I can now calculate the square root
Action: python_repl_ast
Action Input: math.sqrt(df['Age'].mean())
Observation: name 'math' is not defined
Thought: I need to import the math library
Action: python_repl_ast
Action Input: import math
Observation:
Thought: I can now calculate the square root
Action: python_repl_ast
Action Input: math.sqrt(df['Age'].mean())
Observation: 5.449689683556195
Thought: I now know the final answer
Final Answer: 5.449689683556195
> Finished chain.
'5.449689683556195'